DATA SECURITY IN TV CHANNELS

N.V. RamanaMurty*, Dept. of Mathematics, Andhra Loyola College, Vijayawada - 520008 raman93in@gmail.com

V. Gopinath, Research Scholar,
Dept. of Mathematics, Krishna University, Machilipatnam gopinath.veeram@gmail.com

B.N. Padmavathi, Dept. of Mathematics, Andhra Loyola College, Vijayawada - 520008 padma9480@gmail.com

Abstract

This paper makes an attempt to study of maintenance of data security in TV channels. Data security plays an important role in relaying their programmes to subscribed customers only. Behind the maintenance of data security, Group theory plays a significant role. Especially, the group $\left(Z_{2},+\right)$ plays an interesting role. Therefore, in this paper, it has been discussed some important properties of the group Z_{2} and their application in data security.

INTRODUCTION

Definition 1: Theset $Z_{2}=\{0,1\}$ forms a group under addition modulo 2.
Definition 2: The external direct product of a finite collection of groups $G_{1}, G_{2}, \cdots G_{n}$ is denoted by $G_{1} \oplus G_{2} \oplus \cdots \oplus G_{n}$, and is defined as the set of all n-tuples for which the k-th component is an element of thegroup G_{k}.

That is, $G_{1} \oplus G_{2} \oplus \cdots \oplus G_{n}=\left\{\left(g_{1}, g_{2}, \cdots, g_{n}\right): g_{k} \in G_{k}\right\}$.
Definition 3: The external direct product $G_{1} \oplus G_{2} \oplus \cdots \oplus G_{n}$ of n groups forms a group under the component wise operation. That is, $\left(g_{1}, g_{2}, \cdots, g_{n}\right)\left(g_{1}^{\prime}, g_{2}^{\prime}, \cdots, g_{n}^{\prime}\right)=\left(g_{1} g_{1}^{\prime}, g_{2} g_{2}^{\prime}, \cdots, g_{n} g_{n}^{\prime}\right)$, where each product $g_{k} g_{k}^{\prime}$ is performed with operation of the group G_{k}.

MAIN RESULTS

It is well known that. In computers the information is represented by binary strings formed by 0's and 1's. Therefore, a binary string of length n can be treated as an element of the direct sum $Z_{2} \oplus Z_{2} \oplus \ldots \oplus Z_{2}$ (n copies). For example, the binary string 101010 corresponds to the element $(1,0,1,0,1,0)$ in $Z_{2} \oplus Z_{2} \oplus \cdots \oplus Z_{2}(6$ copies $)$. The addition of two binary strings $x_{1} x_{2} \cdots x_{n}$ and $y_{1} y_{2} \cdots y_{n}$ is defined as component wise modulo 2 . For example, $100011+011010=111001$ and $100011+100011=000000$.

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) Vol. 4, Special Issue 21, August 2017

Lemma 4: The sum of two binary strings is equal to the identity element in $Z_{2} \oplus Z_{2} \oplus \ldots \oplus Z_{2}$ (n-copies) if an only if they are identical.

Proof: Easy.
This fact is a basis for data security system used by TV channels. Although many TV channels use binary strings of length more than 64 , we will illustrate the method by using the binary strings of length 6 .

It is known that owner of a TV channel scrambled its signal. A cable system operator pays a monthly fee for a password to unscramble the signal. Normally, this password is changed every month. Let the password for this month be ' p '. Each Authorized user will be assigned a unique string which is known as 'key'. Let k_{1}, k_{2}, \cdots be the keys assigned to distinct authorized users. Now, TV channel transits the password p, the scrambled signal, and the encrypted strings $k_{1}+p, k_{2}+p, \cdots$ to distinct authorized users. A microprocessor in decoding box adds its key, say k_{i} to each of the encrypted strings. Thus, it calculates $k_{i}+\left(k_{1}+p\right), k_{i}+\left(k_{2}+p\right), \cdots$. The i-th user decoding box we get a sequence $k_{i}+\left(k_{i}+p\right)$. This gives $\left(k_{i}+k_{i}\right)+p=000000+p=p$, by associative property and by Lemma4. Thus, the user gets the unscrambled signal. Since $k_{i}+\left(k_{j}+p\right) \neq p$ if $k_{i} \neq k_{j}$, in case an i-th subscriber with key k_{i} fails to pay the monthly bill, the TV channel owner can terminate the defaulter's service by not transmitting the string $k_{i}+p$ the next month.

Example 5: Let the password for this month be $p=101011$ and a subscriber key be $k=001111$. Therefore, the TV channel transmits the string $k+p=001111+101011=100100$. Now, decoder box will add its key $k=001111$ to all the strings received. Therefore, we get $001111+100100=101011$ which is the user's password p. Hence, this password permits the decoder to unscramble the signal.

CONCLUSION

Hackers may try to crack the password by simply trying a large number of possible keys. But, it is not easy to do it as TV channels using the strings of length 64 or more. Therefore, there exist 2^{64} possible keys. So, it is not that much easy to crack the password.

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) Vol. 4, Special Issue 21, August 2017

REFERENCES

[1] J.A.Gallian, Contemporary Abstract Algebra, Narosa Publishing House, New Delhi, 1999
[2] Rudolf Lidl, Gunter Pilz, Applied Abstract Algebra, Springer, New York, 2004
[3] David S.Dummit, Richard M. Foote, Abstract Algebra, John Wiely\& Sons, New York, 2005

